本系列将根据我学习动手学深度学习过程中,自己记录的学习笔记
我预定观看本系列的读者是已经安装好了linux和英伟达gpu驱动(显卡驱动+cuda toolkit+CUDNN)
这里给出我的使用环境:
wsl虚拟机环境:ubuntu2004
显卡:rtx3060 laptop
显卡驱动:551.23
CUDA驱动:11.2
rnn驱动:8.1.0
conda版本:conda 23.11.0
本次以PyTorch为主要框架,除非特殊说明,默认为PyTorch框架
安装
我们需要配置一个环境来运行 Python、Jupyter Notebook、相关库以及运行本书所需的代码,以快速入门并获得动手学习经验。
安装 Miniconda
最简单的方法就是安装依赖Python 3.x的Miniconda。 如果已安装conda,则可以跳过以下步骤。访问Miniconda网站,根据Python3.x版本确定适合的版本。
我们使用Linux,假设Python版本是3.9(我们的测试版本),将下载名称包含字符串“Linux”的bash脚本,并执行以下操作:
# 文件名可能会更改
sh Miniconda3-py39_4.12.0-Linux-x86_64.sh -b
接下来,初始化终端Shell,以便我们可以直接运行conda
。
~/miniconda3/bin/conda init
现在关闭并重新打开当前的shell。并使用下面的命令创建一个新的环境:
conda create --name d2l python=3.9 -y
现在激活 d2l
环境:
conda activate d2l
安装深度学习框架和d2l
软件包
在安装深度学习框架之前,请先检查计算机上是否有可用的GPU。 例如可以查看计算机是否装有NVIDIA GPU并已安装CUDA。 如果机器没有任何GPU,没有必要担心,因为CPU在前几章完全够用。 但是,如果想流畅地学习全部章节,请提早获取GPU并且安装深度学习框架的GPU版本。
我们可以按如下方式安装PyTorch的CPU或GPU版本:
pip install torch==1.12.0
pip install torchvision==0.13.0
我们的下一步是安装d2l
包,以方便调取本书中经常使用的函数和类:
pip install d2l==0.17.6
下载 D2L Notebook
接下来,需要下载这本书的代码。 可以点击本书HTML页面顶部的“Jupyter 记事本”选项下载后解压代码,或者可以按照如下方式进行下载:
mkdir d2l-zh && cd d2l-zh
curl https://zh-v2.d2l.ai/d2l-zh-2.0.0.zip -o d2l-zh.zip
unzip d2l-zh.zip && rm d2l-zh.zip
cd pytorch
注意:如果没有安装unzip
,则可以通过运行sudo apt install unzip
进行安装。
使用vsacode的话,安装jupyter插件即可直接在vscode中使用
机器学习中的关键组件
首先介绍一些核心组件。无论什么类型的机器学习问题,都会遇到这些组件:
- 可以用来学习的数据(data);
- 如何转换数据的模型(model);
- 一个目标函数(objective function),用来量化模型的有效性;
- 调整模型参数以优化目标函数的算法(algorithm)。
数据
毋庸置疑,如果没有数据,那么数据科学毫无用武之地。
每个数据集由一个个样本(example, sample)组成,大多时候,它们遵循独立同分布(independently and identically distributed, i.i.d.)。
样本有时也叫做数据点(data point)或者数据实例(data instance),通常每个样本由一组称为特征(features,或协变量(covariates))的属性组成。
机器学习模型会根据这些属性进行预测。
在上面的监督学习问题中,要预测的是一个特殊的属性,它被称为标签(label,或目标(target))。
当处理图像数据时,每一张单独的照片即为一个样本,它的特征由每个像素数值的有序列表表示。
比如,$200\times200$彩色照片由$200\times200\times3=120000$个数值组成,其中的“3”对应于每个空间位置的红、绿、蓝通道的强度。
请注意,仅仅拥有海量的数据是不够的,我们还需要正确的数据。
如果数据中充满了错误,或者如果数据的特征不能预测任务目标,那么模型很可能无效。
有一句古语很好地反映了这个现象:“输入的是垃圾,输出的也是垃圾。”(“Garbage in, garbage out.”)
此外,糟糕的预测性能甚至会加倍放大事态的严重性。
模型
大多数机器学习会涉及到数据的转换。
比如一个“摄取照片并预测笑脸”的系统。再比如通过摄取到的一组传感器读数预测读数的正常与异常程度。
虽然简单的模型能够解决如上简单的问题,但本书中关注的问题超出了经典方法的极限。
深度学习与经典方法的区别主要在于:前者关注的功能强大的模型,这些模型由神经网络错综复杂的交织在一起,包含层层数据转换,因此被称为深度学习(deep learning)。
目标函数
前面的内容将机器学习介绍为“从经验中学习”。这里所说的“学习”,是指自主提高模型完成某些任务的效能。
但是,什么才算真正的提高呢?
在机器学习中,我们需要定义模型的优劣程度的度量,这个度量在大多数情况是“可优化”的,这被称之为目标函数(objective function)。
我们通常定义一个目标函数,并希望优化它到最低点。因为越低越好,所以这些函数有时被称为损失函数(loss function,或cost function)。但这只是一个惯例,我们也可以取一个新的函数,优化到它的最高点。这两个函数本质上是相同的,只是翻转一下符号。
当任务在试图预测数值时,最常见的损失函数是平方误差(squared error),即预测值与实际值之差的平方。
当试图解决分类问题时,最常见的目标函数是最小化错误率,即预测与实际情况不符的样本比例。
有些目标函数(如平方误差)很容易被优化,有些目标(如错误率)由于不可微性或其他复杂性难以直接优化。
在这些情况下,通常会优化替代目标。
通常,损失函数是根据模型参数定义的,并取决于数据集。
在一个数据集上,我们可以通过最小化总损失来学习模型参数的最佳值。
该数据集由一些为训练而收集的样本组成,称为训练数据集(training dataset,或称为训练集(training set))。
然而,在训练数据上表现良好的模型,并不一定在“新数据集”上有同样的性能,这里的“新数据集”通常称为测试数据集(test dataset,或称为测试集(test set))。
综上所述,可用数据集通常可以分成两部分:训练数据集用于拟合模型参数,测试数据集用于评估拟合的模型。
然后我们观察模型在这两部分数据集的性能。
“一个模型在训练数据集上的性能”可以被想象成“一个学生在模拟考试中的分数”。
这个分数用来为一些真正的期末考试做参考,即使成绩令人鼓舞,也不能保证期末考试成功。
换言之,测试性能可能会显著偏离训练性能。
当一个模型在训练集上表现良好,但不能推广到测试集时,这个模型被称为过拟合(overfitting)的。
就像在现实生活中,尽管模拟考试考得很好,真正的考试不一定百发百中。
优化算法
当我们获得了一些数据源及其表示、一个模型和一个合适的损失函数,接下来就需要一种算法,它能够搜索出最佳参数,以最小化损失函数。
深度学习中,大多流行的优化算法通常基于一种基本方法--梯度下降(gradient descent)。
简而言之,在每个步骤中,梯度下降法都会检查每个参数,看看如果仅对该参数进行少量变动,训练集损失会朝哪个方向移动。
然后,它在可以减少损失的方向上优化参数。
各种机器学习问题
下面将列出一些常见的机器学习问题和应用
接下来会经常引用前面提到的概念,如数据、模型和优化算法。
监督学习
监督学习(supervised learning)擅长在“给定输入特征”的情况下预测标签。 每个“特征-标签”对都称为一个样本(example)。 有时,即使标签是未知的,样本也可以指代输入特征。 我们的目标是生成一个模型,能够将任何输入特征映射到标签(即预测)。
举一个具体的例子: 假设我们需要预测患者的心脏病是否会发作,那么观察结果“心脏病发作”或“心脏病没有发作”将是样本的标签。 输入特征可能是生命体征,如心率、舒张压和收缩压等。
监督学习之所以能发挥作用,是因为在训练参数时,我们为模型提供了一个数据集,其中每个样本都有真实的标签。 用概率论术语来说,我们希望预测“估计给定输入特征的标签”的条件概率。 虽然监督学习只是几大类机器学习问题之一,但是在工业中,大部分机器学习的成功应用都使用了监督学习。 这是因为在一定程度上,许多重要的任务可以清晰地描述为,在给定一组特定的可用数据的情况下,估计未知事物的概率。比如:
- 根据计算机断层扫描(Computed Tomography,CT)肿瘤图像,预测是否为癌症;
- 给出一个英语句子,预测正确的法语翻译;
- 根据本月的财务报告数据,预测下个月股票的价格;
监督学习的学习过程一般可以分为三大步骤:
- 从已知大量数据样本中随机选取一个子集,为每个样本获取真实标签。有时,这些样本已有标签(例如,患者是否在下一年内康复?);有时,这些样本可能需要被人工标记(例如,图像分类)。这些输入和相应的标签一起构成了训练数据集;
- 选择有监督的学习算法,它将训练数据集作为输入,并输出一个“已完成学习的模型”;
- 将之前没有见过的样本特征放到这个“已完成学习的模型”中,使用模型的输出作为相应标签的预测。
综上所述,即使使用简单的描述给定输入特征的预测标签,监督学习也可以采取多种形式的模型,并且需要大量不同的建模决策,这取决于输入和输出的类型、大小和数量。例如,我们使用不同的模型来处理“任意长度的序列”或“固定长度的序列”。
1.3.1.1. 回归
回归(regression)是最简单的监督学习任务之一。 假设有一组房屋销售数据表格,其中每行对应一个房子,每列对应一个相关的属性,例如房屋的面积、卧室的数量、浴室的数量以及到镇中心的步行距离,等等。 每一行的属性构成了一个房子样本的特征向量。 如果一个人住在纽约或旧金山,而且他不是亚马逊、谷歌、微软或Facebook的首席执行官,那么他家的特征向量(房屋面积,卧室数量,浴室数量,步行距离)可能类似于:([600, 1, 1, 60])。 如果一个人住在匹兹堡,这个特征向量可能更接近([3000, 4, 3, 10])…… 当人们在市场上寻找新房子时,可能需要估计一栋房子的公平市场价值。 为什么这个任务可以归类为回归问题呢?本质上是输出决定的。 销售价格(即标签)是一个数值。 当标签取任意数值时,我们称之为回归问题,此时的目标是生成一个模型,使它的预测非常接近实际标签值。
分类
虽然回归模型可以很好地解决“有多少”的问题,但是很多问题并非如此。例如,一家银行希望在其移动应用程序中添加支票扫描功能。具体地说,这款应用程序能够自动理解从图像中看到的文本,并将手写字符映射到对应的已知字符之上。这种“哪一个”的问题叫做分类(classification)问题。分类问题希望模型能够预测样本属于哪个类别(category,正式称为类(class))。例如,手写数字可能有10类,标签被设置为数字0~9。最简单的分类问题是只有两类,这被称之为二项分类(binomial classification)。例如,数据集可能由动物图像组成,标签可能是$\mathrm{{猫, 狗}}$两类。回归是训练一个回归函数来输出一个数值;分类是训练一个分类器来输出预测的类别。
然而模型怎么判断得出这种“是”或“不是”的硬分类预测呢?我们可以试着用概率语言来理解模型。给定一个样本特征,模型为每个可能的类分配一个概率。比如,之前的猫狗分类例子中,分类器可能会输出图像是猫的概率为0.9。0.9这个数字表达什么意思呢?可以这样理解:分类器90%确定图像描绘的是一只猫。预测类别的概率的大小传达了一种模型的不确定性,本书后面章节将讨论其他运用不确定性概念的算法。
当有两个以上的类别时,我们把这个问题称为多项分类(multiclass classification)问题。常见的例子包括手写字符识别 $\mathrm{{0, 1, 2, … 9, a, b, c, …}}$。与解决回归问题不同,分类问题的常见损失函数被称为交叉熵(cross-entropy),本书 :numref:sec_softmax
将详细阐述。
请注意,最常见的类别不一定是最终用于决策的类别。举个例子,假设后院有一个图1.3.2所示的蘑菇。
图1.3.2 死帽蕈——不能吃!!¶
现在,我们想要训练一个毒蘑菇检测分类器,根据照片预测蘑菇是否有毒。假设这个分类器输出 图1.3.2包含死帽蕈的概率是0.2。换句话说,分类器80%确定图中的蘑菇不是死帽蕈。尽管如此,我们也不会吃它,因为不值得冒20%的死亡风险。换句话说,不确定风险的影响远远大于收益。因此,我们需要将“预期风险”作为损失函数,即需要将结果的概率乘以与之相关的收益(或伤害)。在这种情况下,食用蘑菇造成的损失为$0.2 \times \infty + 0.8 \times 0 = \infty$,而丢弃蘑菇的损失为$0.2 \times 0 + 0.8 \times 1 = 0.8$。事实上,谨慎是有道理的, 图1.3.2中的蘑菇实际上是一个死帽蕈。
分类可能变得比二项分类、多项分类复杂得多。例如,有一些分类任务的变体可以用于寻找层次结构,层次结构假定在许多类之间存在某种关系。因此,并不是所有的错误都是均等的。人们宁愿错误地分入一个相关的类别,也不愿错误地分入一个遥远的类别,这通常被称为层次分类(hierarchical classification)。早期的一个例子是卡尔·林奈,他对动物进行了层次分类。
在动物分类的应用中,把一只狮子狗误认为雪纳瑞可能不会太糟糕。但如果模型将狮子狗与恐龙混淆,就滑稽至极了。层次结构相关性可能取决于模型的使用者计划如何使用模型。例如,响尾蛇和乌梢蛇血缘上可能很接近,但如果把响尾蛇误认为是乌梢蛇可能会是致命的。因为响尾蛇是有毒的,而乌梢蛇是无毒的。
1.3.1.3. 标记问题
学习预测不相互排斥的类别的问题称为多标签分类(multi-label classification)。 举个例子,人们在技术博客上贴的标签,比如“机器学习”“技术”“小工具”“编程语言”“Linux”“云计算”“AWS”。 一篇典型的文章可能会用5~10个标签,因为这些概念是相互关联的。 关于“云计算”的帖子可能会提到“AWS”,而关于“机器学习”的帖子也可能涉及“编程语言”。
此外,在处理生物医学文献时,我们也会遇到这类问题。 正确地标记文献很重要,有利于研究人员对文献进行详尽的审查。 在美国国家医学图书馆(The United States National Library of Medicine),一些专业的注释员会检查每一篇在PubMed中被索引的文章,以便将其与Mesh中的相关术语相关联(Mesh是一个大约有28000个标签的集合)。 这是一个十分耗时的过程,注释器通常在归档和标记之间有一年的延迟。 这里,机器学习算法可以提供临时标签,直到每一篇文章都有严格的人工审核。 事实上,近几年来,BioASQ组织已经举办比赛来完成这项工作。
1.3.1.4. 搜索
有时,我们不仅仅希望输出一个类别或一个实值。 在信息检索领域,我们希望对一组项目进行排序。 以网络搜索为例,目标不是简单的“查询(query)-网页(page)”分类,而是在海量搜索结果中找到用户最需要的那部分。 搜索结果的排序也十分重要,学习算法需要输出有序的元素子集。 换句话说,如果要求我们输出字母表中的前5个字母,返回“A、B、C、D、E”和“C、A、B、E、D”是不同的。 即使结果集是相同的,集内的顺序有时却很重要。
该问题的一种可能的解决方案:首先为集合中的每个元素分配相应的相关性分数,然后检索评级最高的元素。PageRank,谷歌搜索引擎背后最初的秘密武器就是这种评分系统的早期例子,但它的奇特之处在于它不依赖于实际的查询。 在这里,他们依靠一个简单的相关性过滤来识别一组相关条目,然后根据PageRank对包含查询条件的结果进行排序。 如今,搜索引擎使用机器学习和用户行为模型来获取网页相关性得分,很多学术会议也致力于这一主题。
1.3.1.5. 推荐系统
另一类与搜索和排名相关的问题是推荐系统(recommender system),它的目标是向特定用户进行“个性化”推荐。 例如,对于电影推荐,科幻迷和喜剧爱好者的推荐结果页面可能会有很大不同。 类似的应用也会出现在零售产品、音乐和新闻推荐等等。
尽管推荐系统具有巨大的应用价值,但单纯用它作为预测模型仍存在一些缺陷。 首先,我们的数据只包含“审查后的反馈”:用户更倾向于给他们感觉强烈的事物打分。 例如,在五分制电影评分中,会有许多五星级和一星级评分,但三星级却明显很少。 此外,推荐系统有可能形成反馈循环:推荐系统首先会优先推送一个购买量较大(可能被认为更好)的商品,然而目前用户的购买习惯往往是遵循推荐算法,但学习算法并不总是考虑到这一细节,进而更频繁地被推荐。 综上所述,关于如何处理审查、激励和反馈循环的许多问题,都是重要的开放性研究问题。
1.3.1.6. 序列学习¶
以上大多数问题都具有固定大小的输入和产生固定大小的输出。 例如,在预测房价的问题中,我们考虑从一组固定的特征:房屋面积、卧室数量、浴室数量、步行到市中心的时间; 图像分类问题中,输入为固定尺寸的图像,输出则为固定数量(有关每一个类别)的预测概率; 在这些情况下,模型只会将输入作为生成输出的“原料”,而不会“记住”输入的具体内容。
如果输入的样本之间没有任何关系,以上模型可能完美无缺。 但是如果输入是连续的,模型可能就需要拥有“记忆”功能。 比如,我们该如何处理视频片段呢? 在这种情况下,每个视频片段可能由不同数量的帧组成。 通过前一帧的图像,我们可能对后一帧中发生的事情更有把握。 语言也是如此,机器翻译的输入和输出都为文字序列。
再比如,在医学上序列输入和输出就更为重要。 设想一下,假设一个模型被用来监控重症监护病人,如果他们在未来24小时内死亡的风险超过某个阈值,这个模型就会发出警报。 我们绝不希望抛弃过去每小时有关病人病史的所有信息,而仅根据最近的测量结果做出预测。
这些问题是序列学习的实例,是机器学习最令人兴奋的应用之一。 序列学习需要摄取输入序列或预测输出序列,或两者兼而有之。 具体来说,输入和输出都是可变长度的序列,例如机器翻译和从语音中转录文本。 虽然不可能考虑所有类型的序列转换,但以下特殊情况值得一提。
标记和解析。这涉及到用属性注释文本序列。 换句话说,输入和输出的数量基本上是相同的。 例如,我们可能想知道动词和主语在哪里,或者可能想知道哪些单词是命名实体。 通常,目标是基于结构和语法假设对文本进行分解和注释,以获得一些注释。 这听起来比实际情况要复杂得多。 下面是一个非常简单的示例,它使用“标记”来注释一个句子,该标记指示哪些单词引用命名实体。 标记为“Ent”,是实体(entity)的简写。
Tom has dinner in Washington with Sally
Ent - - - Ent - Ent
自动语音识别。在语音识别中,输入序列是说话人的录音(如 图1.3.5 所示),输出序列是说话人所说内容的文本记录。 它的挑战在于,与文本相比,音频帧多得多(声音通常以8kHz或16kHz采样)。 也就是说,音频和文本之间没有1:1的对应关系,因为数千个样本可能对应于一个单独的单词。 这也是“序列到序列”的学习问题,其中输出比输入短得多。
图1.3.5 -D-e-e-p- L-ea-r-ni-ng- 在录音中。
文本到语音。这与自动语音识别相反。 换句话说,输入是文本,输出是音频文件。 在这种情况下,输出比输入长得多。 虽然人类很容易识判断发音别扭的音频文件,但这对计算机来说并不是那么简单。
机器翻译。 在语音识别中,输入和输出的出现顺序基本相同。 而在机器翻译中,颠倒输入和输出的顺序非常重要。 换句话说,虽然我们仍将一个序列转换成另一个序列,但是输入和输出的数量以及相应序列的顺序大都不会相同。 比如下面这个例子,“错误的对齐”反应了德国人喜欢把动词放在句尾的特殊倾向。
德语: Haben Sie sich schon dieses grossartige Lehrwerk angeschaut?
英语: Did you already check out this excellent tutorial?
错误的对齐: Did you yourself already this excellent tutorial looked-at?
其他学习任务也有序列学习的应用。 例如,确定“用户阅读网页的顺序”是二维布局分析问题。 再比如,对话问题对序列的学习更为复杂:确定下一轮对话,需要考虑对话历史状态以及现实世界的知识…… 如上这些都是热门的序列学习研究领域。
1.3.2. 无监督学习
到目前为止,所有的例子都与监督学习有关,即需要向模型提供巨大数据集:每个样本包含特征和相应标签值。 打趣一下,“监督学习”模型像一个打工仔,有一份极其专业的工作和一位极其平庸的老板。 老板站在身后,准确地告诉模型在每种情况下应该做什么,直到模型学会从情况到行动的映射。 取悦这位老板很容易,只需尽快识别出模式并模仿他们的行为即可。
相反,如果工作没有十分具体的目标,就需要“自发”地去学习了。 比如,老板可能会给我们一大堆数据,然后要求用它做一些数据科学研究,却没有对结果有要求。 这类数据中不含有“目标”的机器学习问题通常被为无监督学习(unsupervised learning), 本书后面的章节将讨论无监督学习技术。 那么无监督学习可以回答什么样的问题呢?来看看下面的例子。
- 聚类(clustering)问题:没有标签的情况下,我们是否能给数据分类呢?比如,给定一组照片,我们能把它们分成风景照片、狗、婴儿、猫和山峰的照片吗?同样,给定一组用户的网页浏览记录,我们能否将具有相似行为的用户聚类呢?
- 主成分分析(principal component analysis)问题:我们能否找到少量的参数来准确地捕捉数据的线性相关属性?比如,一个球的运动轨迹可以用球的速度、直径和质量来描述。再比如,裁缝们已经开发出了一小部分参数,这些参数相当准确地描述了人体的形状,以适应衣服的需要。另一个例子:在欧几里得空间中是否存在一种(任意结构的)对象的表示,使其符号属性能够很好地匹配?这可以用来描述实体及其关系,例如“罗马” $-$ “意大利” $+$ “法国” $=$ “巴黎”。
- 因果关系(causality)和概率图模型(probabilistic graphical models)问题:我们能否描述观察到的许多数据的根本原因?例如,如果我们有关于房价、污染、犯罪、地理位置、教育和工资的人口统计数据,我们能否简单地根据经验数据发现它们之间的关系?
- 生成对抗性网络(generative adversarial networks):为我们提供一种合成数据的方法,甚至像图像和音频这样复杂的非结构化数据。潜在的统计机制是检查真实和虚假数据是否相同的测试,它是无监督学习的另一个重要而令人兴奋的领域。
1.3.4. 强化学习
如果你对使用机器学习开发与环境交互并采取行动感兴趣,那么最终可能会专注于强化学习(reinforcement learning)。 这可能包括应用到机器人、对话系统,甚至开发视频游戏的人工智能(AI)。 深度强化学习(deep reinforcement learning)将深度学习应用于强化学习的问题,是非常热门的研究领域。 突破性的深度Q网络(Q-network)在雅达利游戏中仅使用视觉输入就击败了人类, 以及 AlphaGo 程序在棋盘游戏围棋中击败了世界冠军,是两个突出强化学习的例子。
在强化学习问题中,智能体(agent)在一系列的时间步骤上与环境交互。 在每个特定时间点,智能体从环境接收一些观察(observation),并且必须选择一个动作(action),然后通过某种机制(有时称为执行器)将其传输回环境,最后智能体从环境中获得奖励(reward)。 此后新一轮循环开始,智能体接收后续观察,并选择后续操作,依此类推。 强化学习的过程在 图1.3.7 中进行了说明。 请注意,强化学习的目标是产生一个好的策略(policy)。 强化学习智能体选择的“动作”受策略控制,即一个从环境观察映射到行动的功能。
图1.3.7 强化学习和环境之间的相互作用
强化学习框架的通用性十分强大。 例如,我们可以将任何监督学习问题转化为强化学习问题。 假设我们有一个分类问题,可以创建一个强化学习智能体,每个分类对应一个“动作”。 然后,我们可以创建一个环境,该环境给予智能体的奖励。 这个奖励与原始监督学习问题的损失函数是一致的。
当然,强化学习还可以解决许多监督学习无法解决的问题。 例如,在监督学习中,我们总是希望输入与正确的标签相关联。 但在强化学习中,我们并不假设环境告诉智能体每个观测的最优动作。 一般来说,智能体只是得到一些奖励。 此外,环境甚至可能不会告诉是哪些行为导致了奖励。
以强化学习在国际象棋的应用为例。 唯一真正的奖励信号出现在游戏结束时:当智能体获胜时,智能体可以得到奖励1;当智能体失败时,智能体将得到奖励-1。 因此,强化学习者必须处理学分分配(credit assignment)问题:决定哪些行为是值得奖励的,哪些行为是需要惩罚的。 就像一个员工升职一样,这次升职很可能反映了前一年的大量的行动。 要想在未来获得更多的晋升,就需要弄清楚这一过程中哪些行为导致了晋升。
强化学习可能还必须处理部分可观测性问题。 也就是说,当前的观察结果可能无法阐述有关当前状态的所有信息。 比方说,一个清洁机器人发现自己被困在一个许多相同的壁橱的房子里。 推断机器人的精确位置(从而推断其状态),需要在进入壁橱之前考虑它之前的观察结果。
最后,在任何时间点上,强化学习智能体可能知道一个好的策略,但可能有许多更好的策略从未尝试过的。 强化学习智能体必须不断地做出选择:是应该利用当前最好的策略,还是探索新的策略空间(放弃一些短期回报来换取知识)。
一般的强化学习问题是一个非常普遍的问题。 智能体的动作会影响后续的观察,而奖励只与所选的动作相对应。 环境可以是完整观察到的,也可以是部分观察到的,解释所有这些复杂性可能会对研究人员要求太高。 此外,并不是每个实际问题都表现出所有这些复杂性。 因此,学者们研究了一些特殊情况下的强化学习问题。
当环境可被完全观察到时,强化学习问题被称为马尔可夫决策过程(markov decision process)。 当状态不依赖于之前的操作时,我们称该问题为上下文赌博机(contextual bandit problem)。 当没有状态,只有一组最初未知回报的可用动作时,这个问题就是经典的多臂赌博机(multi-armed bandit problem)。
Comments NOTHING